什么叫奇函数?

如果对于函数f(x)什么是奇函数的定义域内任意一个x什么是奇函数,都有f(-x)= - f(x)什么是奇函数,那么函数f(x)就叫做奇函数。一般地什么是奇函数,如果对于函数f(x)什么是奇函数的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。

偶函数的定义域必须关于y轴对称,否则不能成为偶函数。

奇函数的图象关于原点中心对称。

偶函数的图象关于Y轴对称。

奇、偶函数的定义域一定关于原点对称。

奇函数的偶次项系数等于0,偶函数的奇次项系数等于0。

Y=0即是X轴,既是奇函数也是偶函数。

奇函数性质

1. 两个奇函数相加所得的和或相减所得的差为奇函数 。

2. 一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

3. 两个奇函数相乘所得的积或相除所得的商为偶函数。

4. 一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

5. 当且仅当(定义域关于原点对称)时,既是奇函数又是偶函数。奇函数在对称区间上的积分为零。

什么是奇函数?

奇函数的性质如下:

1、奇函数的图象关于原点(0,0)中心对称。

2、在奇函数f(x)中,f(x)和f(-x)的符号相反且绝对值相等,即f(-x)=-f(x)。

3、奇函数在关于原点对称的区间上单调性一致。

什么是奇函数-正弦函数为什么是奇函数

4、若f(x)为奇函数,定义域中含有0,则f(0)=0。

5、奇函数的定义域必须关于原点(0,0)对称。

注意事项

1、如果函数f(x)在0处有定义,但是f(0)不为0,那么f(x)一定不是奇函数。因为如果f(x)是奇函数,一定有f(x)=–f(–x),即f(0)=–f(0),移项,合并同类项,得:2f(0)=0,求解得:f(0)=0。

2、判断函数在给定区间内是否是奇偶函数,必须要严格验证函数给定区间上的每个点,只要有任何一个点不满足奇偶函数表达式的概念,这个函数就不是奇偶函数。

什么是奇函数

1、奇函数什么是奇函数:如果对于函数f(x)什么是奇函数的定义域内任意一个x什么是奇函数,都有f(-x)=-f(x)什么是奇函数,那么函数f(x)就叫做奇函数。 2、偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

3、特别地:如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

4、如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

5、函数奇偶性的证明方法一般有:⑴定义法:函数定义域是否关于原点对称,对应法则是否相同。⑵图像法:f(x)为奇函数=f(x)的图像关于原点对称点(x,y)→(-x,-y)f(x)为偶函数=f(x)的图像关于Y轴对称点(x,y)→(-x,y)⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。

奇函数的定义是什么?

1、f(X)为奇函数,F(X)为偶函数;

2、f(X)为偶函数(不能推出)F(X)为奇函数;

3、F(X)为奇函数,f(X)为偶函数。

其中,F(X)为函数f(x)原函数。

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

扩展资料:

若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。