arctanx的导数怎么求?

arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。

如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且

[f−1(x)]′=1f′(y)或dydx=1dxdy

[f−1(x)]′=1f′(y)或dydx=1dxdy

这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。

扩展资料:

三角函数求导公式

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

arctanx的导数

arctanx=x-1/3*x^3+1/5*x^5-1/7*x^7+1/9*x^9+...+(-1)^(n+1)/(2n-1)*x^(2n-1)

使用条件arctanx的导数

麦克劳林公式无论什么条件下都能使用arctanx的导数,关键是展开的项数不能少于最低要求。x的趋向是要求的极限决定的,与展开式无关。

注意是参与加减运算的两部分的极限必须都是存在的。这是由极限的四则混合运算规则决定的。

麦克劳林公式是泰勒公式的一种特殊形式。

扩资资料:

麦克劳林公式 是泰勒公式(在x。=0下)的一种特殊形式。

若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:

f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn

其中Rn是公式的余项,可以是如下:

1.佩亚诺(Peano)余项:

Rn(x) = o(x^n)

2.尔希-罗什(Schlomilch-Roche)余项:

Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

3.拉格朗日(Lagrange)余项:

Rn(x) = f(n+1)(θx)x^(n+1)/(n+1)!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

参考资料:百度百科——麦克劳林公式

如何用定义证明arctanx的导数?

令y=arctanxarctanx的导数,x=tany,dx/dy=sec²y=tan²y+1。

包含arctanx的导数的词条

dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²),具体证明过程如下:

tanx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。arctanx是反正切函数,其定义域是R,反正切函数arctanx的导数的值域为(-π/2,π/2),区别如下:

1、两者的周期性不同

(1)tanx为周期函数,最小正周期为π。

(2)arctanx不是周期函数。

2、两者的单调区间不同

(1)tanx有单调区间(-π/2+kπ,+π/2+kπ),k为整数,且在该区间为单调增函数。

(2)arctanx为单调增函数,单调区间为(-∞,﹢∞)。

导数是函数的局部性质。一个函数在某一点的导数描述arctanx的导数了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。

arctanx的导数怎么求

解:y=arctanx,则x=tany

arctanx′=1/tany′

tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y

则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²

y=arctanx,所以tany=x此时等式两边都求导

得y’tany’=1则y’=1/tany’因y’=arctanx’

所以arctanx’=1/tany’

而tany’=(siny/cosy)’=(siny’cosy-sinycosy’)/cosy的平方=(cosy的平方+siny的平方)/cos的平方=1+tany的平方=1+x的平方。

导函数

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。

以上内容参考:百度百科-导数

arctanx的导数是什么?

令y=arctanxarctanx的导数,x=tany,dx/dy=sec²y=tan²y+1arctanx的导数

dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²),具体证明过程如下:

扩展资料

tanx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。

arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2),区别如下:

1、两者的周期性不同

(1)tanx为周期函数,最小正周期为π。

(2)arctanx不是周期函数。

2、两者的单调区间不同

(1)tanx有单调区间(-π/2+kπ,+π/2+kπ),k为整数,且在该区间为单调增函数。

(2)arctanx为单调增函数,单调区间为(-∞,﹢∞)。