如何计算统计学中的P值?(200分)
P值即为拒绝域的面积或概率。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
扩展资料:
用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
1、左侧检验
P值是当 时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
2、右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
3、双侧检验
P值是当μ=μ0时,做含检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。
p值若与选定显著性水平(0.05或0.01)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布悄春的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能纯运笑会带来争议。
参考资料:百度百科—P值
P值如何计算?
计算过程如下:
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
左侧检验 H0:μ≥μ0 vs H1:μμ0
P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(Z≤ZC|μ=μ0)
右侧检验 H0:μ≤μ0 vs H1:μμ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(Z≥ZC|μ=μ0) 辩谈
双侧检验 H0:μ=μ0 vs H1:μ≠μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(Z≥|ZC||μ=μ0)
X^2计算如下:
统计学的英文statistics最早源于现代拉丁文Statisticum Collegium(国会)、意大利文Statista(国民或政治家)以及德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。
十九世纪,统计学在广泛氏李的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里士多德时代,迄今已有两千三百多年的历史。
它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”、“政治算数”和“统计分析科学”三个发展阶段。
所谓“数理统计”并非独立于统计学的新学科,确切地说,它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的携核碰范畴,而是属于数学的范畴。
统计学的p值怎么算
统计学意义(p值)zt
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重森隐清复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还携埋包含了相当高的犯错可能性。结果0.05≥p0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有此前关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
统计学假设检验中,p值怎么计算
p值的计算公式:
=2[1-φ(z0)]
当被测假设h1为
p不等于p0时;
=1-φ(z0)
当被测假设h1为
p大于p0时;
=φ(z0)
当被测假设h1为
p小于p0时;
其中,φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当禅坦睁p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
注意,这里p0是那个缺少的假设满意度,而不是要求的p值。
没有p0就形不成假设检验,也就不存在p值
统计学上规定的p值意义:
p值
碰巧的概率
对无效假设
统计意义
p>0.05
碰巧贺岁出现的可能性大于5%
不能否定无效假设
两组差别无显著意义
p<0.05
碰巧出信棚现的可能性小于5%
可以否定无效假设
两组差别有显著意义
p
<0.01
碰巧出现的可能性小于1%
可以否定无效假设
两者差别有非常显著意义
统计学中的P值应该怎么计算
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假雀灶设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大拆拆小和实际问题来解决。
扩展资料
统计学中回归分析的主要内容为:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
4、利用所求的关系式对某一生产过程进行预测顷御扮或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
参考资料来源:百度百科—P值