高等数学什么是齐次方程?

"齐次"表示各个未知数齐次方程是什么意思的次数是相同的.例如y/x+x/y+a=1等,它们的右端,都是未知数的齐次函数或齐次多项式

一阶线性微分方程,定义齐次方程是什么意思:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程对于未知函数y及其导数是一次方程.)

当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性方程.(这里所谓的齐次,指的是方程的每一项关于y、y'、y"等的次数.因为y'和P(x)y都是一次的,所以为齐次.)

当Q(x)≠0时,称方程y'+P(x)y=Q(x)为一阶非齐次线性方程.(由于Q(x)中未含y及其导数,所以是关于y及其各阶导数的0次项,因为方程中含一次项又含0次项,所以为非齐次.)

一阶线性微分方程的求解一般采用常数变易法.

齐次方程组是什么?

齐次方程组也就是齐次线性方程组,齐次线性方程组指的是常数项全部为零的线性方程组。

如果mn(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若mn,则一定nr,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

相关性质:

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解;齐次线性方程组的系数矩阵秩r(A)n,方程组有无数多解。

齐次方程是什么意思-一元二次方程因式分解法

4、n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。

齐次式是什么意思什么叫做齐次式

1、齐次式是指合并同类项后,每一项关于x、y的次数都是相等的的多项式,次数为一次就是一次齐次式,次数为二次就是二次齐次式,如x-2y,3z是一次齐次式,x^2+xy是二次齐次式。齐次方程(homogeneousequation)是数学的一个方程,是指简化后的方程中所有非零项的指数相等,也叫所含各项关于未知数的次数。

2、其方程左端是含未知数的项,右端等于零。通常齐次方程是求解问题的过渡形式,化为齐次方程后便于求解。

齐次方程为什么叫齐次

形如y'=f(y/x)的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如x²,xy,y²都算是二次项,而y/x算0次项,方程y'=1+y/x中每一项都是0次项,所以是“齐次方程”。

齐次方程是数学的一个方程,是指简化后的方程中所有非零项的指数相等,也叫所含各项关于未知数的次数。其方程左端是含未知数的项,右端等于零。通常齐次方程是求解问题的过渡形式,化为齐次方程后便于求解。“齐次”从词面上解释是“次数相等”的意思。

高等数学中,什么叫齐次方程?什么叫一阶线性齐次方程?

1、齐次方程是数学的一个方程,是指简化后的方程中所有非零项的指数相等,也叫所含各项关于未知数的次数;

2、一阶线性微分方程,定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项;

3、方程左端是含未知数的项,右端等于零。通常齐次方程是求解问题的过渡形式,化为齐次方程后便于求解。

扩展资料:

如果右边的函数f(x,y)是零次齐次函数,则这种一阶方程称为一阶齐次型方程。k次齐次函数指的是存在一个常数k,使得f(tx,ty)=t^k*f(x,y),如果k=0,f(x,y)是零次齐次函数,即f(tx,ty)=f(x,y),此时f(x,y)=f(x*1,x*y/x)=f(1,y/x),可写成g(y/x)的结构。

如果右边的函数f(x,y)是关于y的线性函数P(x)y+Q(x),则称微分方程y'=P(x)y+Q(x)为一阶线性方程,与y完全无关的项Q(x)=0时为齐次线性方程,Q(x)≠0时为非齐次线性方程。

参考资料来源:百度百科-齐次方程