有理数包括小数么
不一定。准确的说:有理数包括有限小数和无限循环小数。即有理数就是分数,而无限不循环小数属于无理数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
扩展资料
1、根据定义,无限循环小数和有限小数(整数可认为是小数点后是0的小数),统称为有理数,无限不循环小数是无理数。 但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,
可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。
2、 证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比已写出有理数多一位,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。
参考资料来源:百度百科_ 有理数
小数是有理数吗
小数是有理数。
有理数是整数和分数的统称,一切有理数都可以写成分数的形式。
小数分为两类,一种是有限小数,一种是无限小数;有限小数如0.25、6.25等,这些也可以写成分数的形式,所以有限小数是有理数;而无限小数又分为两种,一种是无限循环小数,一种是无限不循环小数;无限循环小数如0.3181818……可以写为7/22,所以无限循环小数是有理数。
相关内容:
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
小数都是有理数吗
有理数是整数和分数的统称,一切有理数都可以写成分数的形式
小数分为两类,一种是有限小数,一种是无限小数
有限小数如0.25、6.25等,这些也可以写成分数的形式,所以有限小数是有理数
而无限小数又分为两种,一种是无限循环小数,一种是无限不循环小数
无限循环小数如0.3181818……可以写为7/22,所以无限循环小数是有理数
无限不循环小数指小数点后有无限个数位,但没有周期性的重复,或者说没有规律的小数.所以数学上又称无限不循环小数为无理数(如圆周率π,它就是一个无理数).
这些初中就会学的呦