幂函数指的是什么呢?
形如y=x^a(a为常数)幂指函数是什么的函数幂指函数是什么,即以底数为自变量幂为因变量幂指函数是什么,指数为常量的函数称为幂函数。
幂函数属于基本初等函数之一,一般y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
幂函数的特征:
(1)解析式右边是一个幂。
(2)系数为1。
(3)底数是自变量。
(4)指搭手数是常数。
幂函数图像正值性质:
当α>0时,幂函数y=xα有下列性质:
1、图像都经过点(1,1)(0,0)。
2、函数汪简的图像在区间[0,+∞)上是增函数。
3、在第一象限内,α>知陵嫌1时,导数值逐渐增大;α=1时,导数为常数;0α<1时,导数值逐渐减小,趋近于0。
以上内容参考:百度百科-幂函数
幂指函数的定义
幂指函数既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定晌伏不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。
最简单的哗穗幂指函数就是y=xx。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示)。
图1.最简单的幂指函数
在x0时,函数曲线是连续的,并且在x=1/e处取得最小值,约为0.6922,在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
此外,从函数y=xx的乱谨卜图象可以清楚看出,0的0次方是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零非负次幂都等于零”的真正原因。
函数极限
本段中所有的记号,表示的是各种可能的趋向,即 *可以是a、a-0、a+0 、∞ 、-∞ 或+∞ 。
什么叫做幂指函数
函数y=x^∝叫做幂函数幂指函数是什么,y=a^x(a0且a≠1)叫做指数函数。
什么叫幂数函数 怎么求啊 幂数函数的形式是什么
幂函数的一般形式为y=x^a。
如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在幂指函数是什么我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性幂指函数是什么:
首先我们知道如果a=p/q,且p/q为既约分数(即p、q互凯游质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道幂指函数是什么:
排除了为0与负数两种可能,即对于x0,则a可以是任意实数;
排除了为0这种可能,即对于x0或x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大消誉于0是对a的任意取值都有意义的,
必须指出的是,当x0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决盯桥销幂函数值的唯一性问题,但米指数的运算法则较难维系;另一种观点则认为,直接取消x0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。
因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点.(a≠0)
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)显然幂函数无界限。
(6) a=0,该函数为偶函数 {x|x≠0}。
数学中幂函数的定义是什么?
幂函数是基型岩本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
扩展资料:
一、正值性质
当α0时,幂函数y=xα有下列性败岩质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0α1时,导数值逐渐减小,趋近于0(函数值递增);
二、负察租御值性质
当α0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
幂指函数什么意思?
幂指函数就是指数是函数的函数。另外,图片中的式子不正确。